
  
Short Abstract — Dynamical models of cellular regulation of-

ten consist of large and intricate networks of interactions at the 
molecular scale.  Since individual interaction parameters are 
usually difficult to measure, these parameters are often esti-
mated implicitly, using statistical fits. This can lead to overfit-
ting and degradation in the quality of models’ predictions.  
Here we study phenomenological models that adapt their level 
of detail to the amount of available data, leading to accurate 
predictions even when microscopic details are not well under-
stood.  We test the method on synthetic data and find that phe-
nomenological models inferred this way often outperform de-
tailed, “correct” molecular models in making predictions about 
responses of the system to signals yet unseen. 
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I. INTRODUCTION 
N important goal of any modeling effort is to make 
predictions regarding experimental conditions that have 

not yet been observed.  In order to make such predictions, 
large intricate models of microscopic cellular processes re-
quire similarly large datasets of microscopic experimental 
data.   However, it is more common to have data that de-
scribes aggregate input/output properties (e.g., total receptor 
phosphorylation) rather than the detailed microscopic dy-
namics (e.g., site-specific phosphorylation kinetics data).  In 
such situations, fitting parameters to a highly complex model 
can cause overfitting and poor predictions, even if the model 
structure is known well. How should modeling be done 
when the microscopics are unknown?  

We propose a systematic procedure to find predictive 
phenomenological models based on any amount of available 
time series data. We use an ordered hierarchy of dynamical 
models that can account for dynamics with arbitrary com-
plexity. To select the best model within the hierarchy, we 
use a modification of the Bayesian Information Criterion [1] 
that accounts for the typical "sloppiness" of the Fisher in-
formation matrix in large dynamical systems [2]. 
 Multiple machine learning methods have recently been 
proposed to infer networks with an observed input/output 
relationship [3,4]. Our approach has the advantages of scal-
ing in complexity with the amount of available data and re-
maining computationally efficient.   
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II. METHODS 

A. Model hierarchy 
A hierarchy of models is guaranteed to produce, on aver-

age, a statistically consistent model selection and accurate 
inference and predictions if: 1) models are nested, such that 
each next model includes all parts of the previous model, 2) 
the nesting is ordered, so that, for any two models, one al-
ways completely includes the other, and 3) the hierarchy is 
complete, so that data of arbitrary complexity can be fit by 
some sufficiently complex model in the hierarchy [5]. We 
find that choosing a model hierarchy that represents typical 
behavior of cellular interactions leads to better performance. 
For instance, while a polynomial fit of increasing degree 
produces simple models, formalisms such as S-systems [6] 
or recurrent sigmoidal networks [7] match biological behav-
ior better. Further, these formalisms allow for construction 
of model hierarchies that obey the three above conditions, 
can approximate arbitrary dynamical nonlinearities, and can 
account for unobserved variables. 

B. Modified Bayesian Information Criterion 
The Bayesian Information Criterion (BIC) is a natural ap-

proach for making a tradeoff between model complexity and 
fit to in-sample data. It produces the maximally predictive 
models in the limit of well-constrained parameters [1]. In the 
case of large dynamical network models, parameters typi-
cally remain unconstrained even for large amounts of data, 
evident in the so called “sloppy” spectrum of the Fisher in-
formation matrix [2].  We thus modify BIC to account for 
unconstrained directions in parameter space. 

C. Test cases 
We test our inference procedure by fitting simulated out-

put from various typical biochemical models, including an n-
site phosphorylation model and a model of oscillations in 
yeast glycolysis [8]. In the undersampled regime, the in-
ferred phenomenological models outperform microscopi-
cally accurate models of the processes. 

REFERENCES 
[1] Bialek W, Nemenman I, Tishby N (2001) Neural Comput 13, 2409. 
[2] Gutenkunst RG, et al. (2007) PLOS Comput Biol 3, e189. 
[3] Schmidt MD, et al. (2011) Phys Biol 8, 055011. 
[4] Francois P, Siggia ED (2008) Phys Biol 5, 026009. 
[5] Nemenman I (2005) Neural Comput 17, 2006. 
[6] Savageau MA, Voit EO (1987) Math Biosci 87, 83. 
[7] Beer RD (2006) Neural Comp 18, 3009. 
[8] Ruoff P, et al. (2003) Biophys Chem 106, 179. 

Automated adaptive inference of dynamical 
phenomenological models in systems biology 

Bryan C. Daniels1 and Ilya Nemenman2 

A 


